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EFFECTS OF CENTERBODY LENGTH AND NOSE SHAPE ON THE 

TRANSONIC CHARACTERISTICS OF LOW-FINENESS-RATIO 

BODIES OF REVOLUTION WITH A FLARED A.FTEBODY* 

By Roy M. Wakefield, Stuart L. Treon, 
and E a r l  D. Knechtel 

An invest igat ion i n  a transonic wind tunnel has been conducted t o  
determine t h e  s t a t i c  aerodynamic charac te r i s t ics  of low-fineness-ratio 
f l a r ed  bodies of revolution with various centerbody lengths and nose shapes 
which ranged from a sharp, pointed cone t o  a spherical  segment of la rge  
radius. 
diameters are shown for angles of a t tack from -2O t o  +14O a t  t e n  Mach num- 
bers  from 0.60 t o  1.40. The t e s t  Reynolds number w a s  e i t h e r  0.375 mill ion 
or 0.50 million, based upon t h e  cylindrical-body diameter. 

The e f f e c t s  of varying t h e  centerbody length from 0 t o  2 body 

INTRODUCTION 

Demand for aerodynamic data  f o r  low-fineness-ratio bodies of 
revolution at  t ransonic  speeds stems not only from i n t e r e s t  i n  atmosphere- 
en t ry  vehicles  and a i r c r a f t  escape capsules, bu t  a l so  from an awareness 
t h a t  t h e  s t a b i l i t y  of such bodies can vary g rea t ly  i n  the  t ransonic  speed 
range. 
bodies at  transonic speeds i s  reported i n  reference 1. 

An experimental invest igat ion of a f e w  spec i f ic  low-fineness-ratio 

The present report  i s  one of a ser ies  presenting the  r e s u l t s  of an 
invest igat ion being conducted a t  t h e  Ames Research Center t o  determine t h e  
e f f e c t s  of systematic changes i n  model geometry on t h e  aerodynamic char- 
a c t e r i s t i c s  of low-fineness-ratio bodies a t  transonic speeds. 
3, 4, and 5 present t h e  r e s u l t s  of f o u r  phases of t h e  invest igat ion which 
have been completed. 

cy l ind r i ca l  body with a blunt conical nose. 

References 2, 

In  reference 2, t h e  effect iveness  of a f l a r ed  a f t e r -  
I 

A body i s  compared with t h a t  of blunt cruciform f i n s  f o r  s t ab i l i z ing  a 
I n  references 3 and 4 a r e  

- 
i * T i t l e ,  Unclassified 
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presented the  e f f ec t s  of systematic changes i n  afterbody f l a r e  geometry 
f o r  cylinder-flare models with e i t h e r  a blunt conical nose or an oblate 

f o r  a body with a cy l indr ica l  o r  f la red  afterbody. In  the  present report  
a re  the r e su l t s  of an investigation of the e f f ec t s  of centerbody length 
on the  s t a t i c  aerodynamic charac te r i s t ics  a t  transonic speeds of a low-  
f ineness-ratio body of revolution with a f la red  afterbody and various nose 
shapes. The centerbody lengths of the  models were 0, 1, and 2 body diam- 
e t e r s ,  and the nose shapes were a sharp cone, a blunted cone, four semi- 
e l l ipsoids  of varying degrees of bluntness, and a spherical  segment of 
large radius. 

e l l ipso ida l  nose. In  reference 5 a re  reported the  e f f ec t s  of nose shape a 
I 

1 

B 

'Ab 

cAf 

Cm 

CN 

CN 
a 

c .p . 

d 

M 

Pb 

p, 

The results a re  presented without de ta i led  discussion. 

NOTATION 

model base area 

forebody a l d a l  force forebody axial-force coeff ic ient ,  - 
qs 

pitching-moment coeff ic ient  about nose-body juncture, 
Ditching moment 

normal force 
qs 

normal-force coeff ic ient ,  

slope of t he  s t ra ight  l i n e  drawn from CN a t  a = Oo t o  any 
point on the  CN vs .  a curve 

center-of-pressure location, body diameters ahead of moment 
reference shown i n  f igure 1 

cylindrical-body diameter 

Mach number 

base pressure 

tes t -sect ion s t a t i c  pressure 

A 
3 
3 
0 

h 

- *  
I 

, 
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b 
(I 

q dynamic pressure 

S cross-sectional area of cyl indrical  centerbody 

a angle of a t tack,  deg 

Model Component Designations 

NX nose, with subscript denoting nose p r o f i l e  shown i n  f igure 1 

A 
3 
3 
0 

BX cyl indr ica l  centerbody, with subscript denoting length i n  body 
diameters 

F20-4 f la red  afterbody, semivertex angle = 20' and r a t i o  of f l a r e  base 
area t o  cy l indr ica l  body cross-sectional area = 4 

APPARATUS AND MODELS 

The invest igat ion was conducted i n  the  Ames 2- by 2-Foot Transonic 
Wind Tunnel, which i s  of the  closed-circuit, variable-pressure type. 
i ' ac i l i ty  ( r e f .  6) has a perforated t e s t  section which permits continuous 
choke-free operation from subsonic speeds up t o  a Mach number of 1.4.  

This 
I 

The 21 models were combinations of t he  3 body and f l a r e  arrangements 
and the  7 nose shapes shown i n  f igure 1. The centerbodies were 0, 1, and 
2 body diameters i n  length. 
cone, a spherical  segment of large radius, and a se r i e s  of four semiellip- 
soidal  noses f o r  which the r a t i o s  of lengths of longitudinal axes t o  
transverse axes of t he  complete e l l ipsoids  were 0.25, 0.50, 1.0,  and 2.0 
( f i g .  1). 

3 -  
'\ 

The noses included a s h a q  cone, a blunted 

Each model had a 20' flared af'terbody. 

The models were mounted i n  the  t e s t  section on a sting-supported 
strain-gage balance which was shielded by a metal shroud a s  shown i n  f ig -  
ure 1. 
was the  same f o r  a l l  models. 
i n  tke  t e s t  section a re  shown i n  figure 2. 

The posi t ion of t he  shroud with respect t o  the  base of the  f l a r e  
Photographs of th ree  of the models i n s t a l l ed  

TESTS AND DATA REDUCTION 

I The investigation was conducted a t  t en  Mach numbers from 0.6 t o  1 .4  
at angles of a t tack from approximately -2' t o  +14". 
t ravers ing the ang'e-of-attack range was dependent upon the  type of flow 

1 The procedure f o r  
I 

,'nnLlcipated fcr thz various models. For a l l  models aZ a l l  t e s t  Mach 
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numbers, t h e  angle of a t t ack  w a s  decreased from an i n i t i a l  Oo t o  
approximately - 2 O ,  then increased progressively t o  about + 1 4 O .  
:Kith noses 
than 0.90 was then decreased from + 1 4 O  t o  -2O t o  determine t h e  possible  
occurrence of flow hys te res i s  of t he  type reported i n  reference 7 f o r  
blunt-nosed bodies. 
diameter w a s  0.375 mill ion f o r  models with t h e  N1 and N2 noses and 0.50 
mill ion for models with t h e  N6, N7, N8,  N9, and N10 noses. 

For models 
thrGl@i Xlo, t h e  arlgle of a t t ack  a t  Mach numbers grea te r  

The Reynolds number based on t h e  cy l ind r i ca l  body 

I n  order t o  r e s t r i c t  t h e  var ia t ion  of t r a n s i t i o n  locat ion,  boundary- 
layer  t r i p  wires w e r e  affixed t o  t h e  forepar t s  of t h e  models as shown i n  
f igure  1. 
The models with noses N6 through N10 and centerbody lengths of 1 or 2 
diameters had w i r e s  located on t h e  cy l ind r i ca lbod ies ;  whereas t h e  models 
without centerbodies were t e s t e d  without t r i p  wires. The effect iveness  
of t h e  t r i p  wires w a s  determined from flow v isua l iza t ion  s tudies ,  employing 
shadowgraphs and t h e  technique of reference 8, on various models a t  the  
t e s t  Reynolds numbers. 
became turbulent ahead of or a t  t h e  t r i p  wires.' On t h e  models with noses 
N6 through NlO, t he  flow w a s  e i t he r :  (1) attached, with t r a n s i t i o n  occur- 
r i ng  ahead of or a t  the  t r i p  wires,  (2) attached behind a s m a l l  separation 
bubble i n  t h e  v i c i n i t y  of t h e  nose-body juncture, becoming turbulent  ahead 
of or i n  t h e  region of attachment, or (3) f u l l y  separated from t h e  v i c i n i t y  
of t h e  nose-body juncture. 

The models with noses N 1  and N2 had wires located on t h e  noses. 

On t h e  models with t h e  N1 and N2 noses, t h e  flow 

The a x i a l  forces  were resolved t o  forebody and base coef f ic ien ts .  For 
t h e  forebody coef f ic ien ts ,  t h e  measured a x i a l  forces  were adjusted t o  
account for t h e  difference between t h e  base pressures and an assumed con- 
d i t i o n  of free-stream s t a t i c  pressure ac t ing  at  t h e  base of t h e  model. 

The r e s u l t s  of reference 10 f o r  models with cy l ind r i ca l  af terbodies  
m d  of reference 11 f o r  models with f l a r e d  af terbodies  ind ica te  t h a t  t he  
presence of a s t i ng  may have a s igni f icant  e f f ec t  on base axial force.  
However, there  i s  evidence i n  references 7 and 10 t h a t  t he  forebody axial 
force i s  not s ign i f icant ly  affected.  
ference on base a x i a l  force i s  not known f o r  t h e  present models. 

The magnitude of t h e  s t i ng  in t e r -  

The angles of a t tack  have been corrected f o r  e l a s t i c  def lec t ion  Of 
t h e  balance and. s t i n g  under aerodynamic loads. 
t i o n s  are  negl igible .  

2 diameters, there  appeared t o  be a region of laminar flow approximately 
l/k-body diameter i n  length immediately behind t h e  nose-body juncture, 
although t h e  flow over t h e  model noses appeared t o  be turbulent  behind t h e  
t r i p  w i r e s .  
laminar boundary layer  i n  t h e  presence of a strong e q a n s i o n  i s  discussed, 
i n  reference 9. 

Stream angular i ty  correc- 

'On the models with t h e  N 1  and N2 noses, with a centerbody length of 

The phenomenon of a turbulent  boundary layer revert ing t o  a 
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- 
Although t h e  model base area w a s  0.85 percent of t he  cross-sectional 

zyea of t h e  t e s t  section, no corrections were made for possible  i n t e r -  

e f f e c t s  a r e  believed t o  be r e l a t i v e l y  small, i n  view of t h e  r e s u l t s  of 
t ransonic  t e s t s  of various s izes  of sharp- and blunt-nosed bodies reported 
i n  t h e  appendix t o  reference 12. 

b ference e f f ec t s  of t h e  perforated tes t - sec t ion  w a l l s .  Such interference 

i 
In  addition t o  t h e  possible systematic e r ro r s  from neglecting some of 

t h e  above corrections,  ce r t a in  random errors exist which influence t h e  
precision, or repea tab i l i ty ,  of t h e  resul ts .  The precis ion of t he  data  
w a s  determined by t h e  method of reference 13 and t h e  average deviations i n  
values of Mach number, angle of a t tack ,  and aerodynamic coef f ic ien ts  pre- 
sented hereir, were found t o  be approximately as follows: 

M +O .003 Cm +o .03 
+o .02 
+o .01 

a +0.05O 
CN k0.02 

RESULTS 

d 

1. - 
\ 

The var ia t ions  with angle of attack of coef f ic ien ts  of normal force,  
pi tching moment, forebody axial force,  and base axial force a re  presented 
i n  f igu res  3 t o  9 f o r  t h e  various models and Mach numbers of t h i s  inves- 
t i g a t i o n .  
of a t tack  f o r  those models and Mach numbers f o r  which hysteresis  loops 
appear i n  t h e  var ia t ions  of aerodynamic coef f ic ien ts  with angle of a t tack  
( i n  many cases i n  t h e  f igures  data  points for decreasing a re  coinci- 
dent with those f o r  increasing This hys te res i s  phenomenon, which i s  
associated with regions of separated flow, has been shown i n  reference 7 
t o  be a comon and undesirable feature  of transonic flow over blunt-nosed 
bodies, since t h e  introduction i n t o  t h e  pi tching cycle of t h e  energy rep- 
resented by t h e  hys te res i s  loop may lead t o  la rge  pi tching osc i l l a t ions .  

Results are presented f o r  both increasing and decreasing angles 

a 
a ) .  

I n  f igures  10 and 11, respectively, a re  summarized the  var ia t ions  
with Mach number of CN/a and c.p. location a t  th ree  selected angles 
of a t t ack .  
coef f ic ien ts  a t  00 angle of a t tack.  

In  f igure  12 a re  presented the  forebody and base axial-force 

Shadowgraphs presented i n  f igure  13 show t h e  e f f e c t s  of centerbody 
For length on the  flow pa t te rns  f o r  models with blunt  noses N6 and N8. 

models with the  b luntes t  e l l i p so ida l  nose (N6), t h e  flow was' attached on 
t h e  zero and two diameter centerbody configurations and w a s  separated on 
t h e  model with one diameter centerbody ( f ig .  13(a) ) .  s The flow pa t te rns  

"9 

8' 
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shown for models with t h e  hemispherical nose ( N 8 )  a r e  t yp ica l  of models 
with the l e s s  blunt  noses. 
f l o v  wzs attached, t h e  p r inc ipa l  differences i n  t h e  flow pa t te rns  being 
i n  the  shape of t h e  shock wave associated with t h e  f l a r ed  afterbody 

For the  three  models with the  N 8  nose, t h e  

( f ig .  1303) 1 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  Calif . ,  Feb . 8, 1960 
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spherical radius trip wire 

1.875 

- 

Note 2: Dimensions in inches 

k0.156 

~- 

N6 

= 0.25 a 

N7 
a - = 0.50 b 

N8 
a= 1.00 b 

N9 
a 
- = 2.00 b 

Equation for elliptical profiles of noses 
2 2  

N,,N7, N, and Ng: +(!I = 1.00 

Figure 1.- Sketches and dimensions of models and components. 
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C = 0 for 

M =  1.00 
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a 

(e) Forebody axial-force coefficient; M = 0.60 t o  1.00. 

Figure 3 .  - Continued. 
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Cn = 0 for 

M= 1.40 
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cAf 
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1.10 .8 

.4 

N I  'I F20-4 

N I  ' 2  F20-4 

0 4 8 12 16 
1.05 0 

-4 
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(f) Forebody axial-force coefficient; M = 1.05 to 1. 

Figure 3 .- Continued. - 
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( g )  Base axial-force coefficient; M = 0.60 to 1.00. 

CAb= 0 for 
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0.60 

Figure 3.- Continued. 
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(h) Base axial-force coefficient; M = 1.05 to 1.40. 

Figure 3 . -  Concluded. - 
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C = O  for 

M = 1.00 
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(e) Forebody axial-force coefficient;  M = 0.60 t o  1.00. 

Figure 4. - Continued. - 
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M = 1.40 
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N 2  B I  F20-4 

1.05 ''kl 0 N 2  '2 F20-4 
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( f )  Forebody axial-force coeff ic ient ;  M = 1.05 t o  1.40. 

Figure 4. - Continued. 
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(g)  Base axial-force coefficient;  M = 0.60 t o  1.00. 

Figure 4. - Continued. - 
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(e) Forebody axial-force coefficient;  M = 0.60 t o  1.00. 

Figure 5 .  - Continued. 
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M= 1.40 
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( f )  Forebody axial-force coeff ic ient ;  M = 1.05 t o  1.40. 

Figure 5 .  - Continued. - 
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(g)  Base axial-force coefficient;  M = 0.60 to 1.00. 

Figure 3 .  - Continued. 
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(h) Base axial-force coef f ic ien t ,  M = 1.05 t o  1.40. 

Figure 5.- Concluded. 
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(a) Models with the N1 nose. 

Figure 12.- Effects of centerbody length on the  forebody axial force and 
base axial force a t  a = 0' f o r  models with the  same nose shape. 

b 



82 

M 

(b) Models with the N2 nose. 

Figure 12.- Continuedo 
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( c )  Models with the  NG nose. 

Figure 12.- Continued. 
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(d) Models with the  N7 nose. 
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( f )  Models with the  N9 nose. 
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(g) Models with the E l 0  nose. 

Figure 12.- Concluded. 
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Figure 13.- The e f f ec t  of centerbody length on flow pa t te rns  a t  M = 1.4 
0 and a = 0 . 
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(b) Models with the N8 nose. 

F igure  13 e - Concluded. 
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